Impact of Injection on a Stagnation–point Flow of Copper Nanofluids over a Vertical Porous Shrinking or Stretchingplate in the Presence of Magnetic Field

نویسنده

  • Ashwin Kumar
چکیده

Nanofluids are the new generation way to enhance thermal properties of common fluids. The potential of nanofluidshave made them very useful in different heat transfer applications. In this paper, the injection velocity effects on copper nanofluids over permeable stretching/shrining surfaces are analysed in stagnation–point flow. Nanofluids are under the influence of magnetic field. The PDE governing the problem under consideration are transformed by similarity transformation into a system of ODE that is executed numerically using MAPLE 18 software. It is observed that the injection on magnetic field had greatly influenced the heat transfer characteristics in the copper nanofluid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Quasi-linearization for MHD Nanofluid Stagnation Boundary Layer Flow due to a Stretching/Shrinking Surface

This article concentrates on the effect of MHD heat mass transfer on the stagnation point nanofluid flow over a stretching or shrinking sheet with homogeneous-heterogeneous reactions. The flow analysis is disclosed in the neighborhood of stagnation point. Features of heat transport are characterized with Newtonian heating. The homogeneous-heterogeneous chemical reaction between the fluid and di...

متن کامل

Effects of Brownian motion and Thermophoresis on MHD Mixed Convection Stagnation-point Flow of a Nanofluid Toward a Stretching Vertical Sheet in Porous Medium

This article deals with the study of the two-dimensional mixed convection magnetohydrodynamic (MHD) boundary layer of stagnation-point flow over a stretching vertical plate in porous medium filled with a nanofluid. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis in the presence of thermal radiation. The skin-friction coefficient, Nusselt number an...

متن کامل

Effects of heat generation and thermal radiation on steady MHD flow near a stagnation point on a linear stretching sheet in porous medium and presence of variable thermal conductivity and mass transfer

The present paper was aimed to study the effects of variable thermal conductivity and heat generation on the flow of a viscous incompressible electrically conducting fluid in the presence of a uniform transverse magnetic field, thermal radiation, porous medium, mass transfer, and variable free stream near a stagnation point on a non-conducting stretching sheet. Equations of continuity, momentum...

متن کامل

Conjugate Heat Transfer of MHD non-Darcy Mixed Convection Flow of a Nanofluid over a Vertical Slender Hollow Cylinder Embedded in Porous Media

In this paper, conjugate heat transfer of magneto hydrodynamic mixed convection of nanofluid about a vertical slender hollow cylinder embedded in a porous medium with high porosity have been numerically studied. The Forchheimer’s modification of Darcy’s law was used in representing the nanofluid motion inside the porous media. The governing boundary layer equations were transformed to non-dimen...

متن کامل

Effect of magnetic field on the boundary layer flow, heat, and mass transfer of nanofluids over a stretching cylinder

The effect of a transverse magnetic field on the boundary layer flow and heat transfer of anisothermal stretching cylinder is analyzed. The governing partial differential equations for themagnetohydrodynamic, temperature, and concentration boundary layers are transformed into a setof ordinary differential equations using similarity transformations. The obtained ordinarydifferential equations ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016